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1 Introduction

The goal of this research program was to obtain new solutions to fundamental
problems in computer vision, particularly to such problems as stereo compilation,
feature extraction, and general scene modeling that are relevant to the development
of an automated capability for interpreting aerial imagery and the production of
cartographic products.

To achieve this goal, we engaged in investigations of such basic issues as image
matching, scene partitioning, shape representation, and physical modeling. How-
ever, it is obvious that high-level high-performance vision requires the use of both
intelligence and stored knowledge (to provide an integrative framework), as well as
an understanding of the physics and mathematics of the imaging process (to pro-
vide the basic information needed for reasoned interpretation of the sensed data).
Thus, a significant portion of our work was devoted to developing new approaches
to the problem of "knowledge-based vision." Finally, vision research cannot proceed
without a means for effective implementation, demonstration, and experimental ver-
ification of theoretical concepts; we have developed an environment incorporating
some of the newest and most effective computing tools currently available.

The research results described in this final report are partitioned into three topic
areas: (1) three-dimensional scene modeling and stereo reconstruction; (2) feature
extraction: scene partitioning, semantic labeling, and the representation of natural
scenes; and (3) computing environments and technology transfer.

1.1 Three-Dimensional Scene Modeling and Stereo
Reconstruction

Our goal in this research area was to develop automated methods for producing
a 3-D scene model from several images recorded from different viewpoints. The
standard approach to this problem is to use stereo compilation - a technique that
involves finding pairs of corresponding scene points in two images (which depict the
scene from different spatial locations) and using triangulation to determine scene
depth [Barnard 82]. Various factors associated with viewing conditions and scene
content can cause the matching process to fail; these factors include occlusion,
projective or imaging distortion, featureless areas, and repeated or periodic scene
structures. In this section we discuss some of the ways we devised for dealing with
these problems: more effective methods for image matching, interpolation for filling
in "holes" caused by matching failure, and some exciting and radically new methods
for 3-D modeling which avoid the need for local matching.



1.1.1 Baseline Stereo System

We have implemented a complete state-of-the-art stereo system (STEREOSYS) to
produce dense three-dimensional data from stereo pairs of intensity images using
automated area-based stereo compilation. This system operates in several passes
over the data, during which it iteratively builds, checks, and refines its model of the
three-dimensional world, as originally represented by the pair of images.

Our research strategy had been to implement a baseline system that performs
conventional stereo compilation, then to replace pieces of the system with improved
modules as we developed them. We evaluated new developments by testing the "up-
dated" baseline system [Hannah 85a] against a "challenge data base" [Hannah 85b]
of image areas where conventional stereo techniques encounter difficulty.

Our system includes routines to perform the following operations automatically:

" Construct resolution hierarchies for stereo images.

" Select "interesting" points for sparse matching.

" Search 2-D regions for corresponding points (sparse matching).

" If necessary for uncalibrated imagery, compute relative camera parameters
from sparse matches.

* Compute epipolar lines.

" Locate epipolar matches, using disparity estimates from sparse matches when
available.

" Evaluate matched points for believability.

" Interpolate between matched points.

" Display images and results in left-right stereo, red-green stereo, or as a monoc-
ular disparity field.

" Compute range data and x-y-z coordinates for matched point pairs.

" Display terrain data in perspective with hidden lines removed.

(For a more complete description of the components of STEREOSYS, see [Han-
nah 85c] or [Hannah 86].)

Precise quantitative evaluation of the accuracy of STEREOSYS was difficult
because we were not able to obtain stereo data sets with known ground truth
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with which to compare our results. We did, however, have the results of an in-
teractive stereo compilation algorithm, the Digital Interactive Mapping Program
(DIMP), produced and operated by the U.S. Army Engineer Topographic Labo-
ratories (ETL) [Norvelle 811. Detailed comparisons of results on this and other
data sets are presented in [Hannah 85a]. Overall, we have found that the results of
STEREOSYS agree quite well with DIMP results and with human perceptions. In
addition, STEREOSYS remedies some of the obvious problems we had seen with
existing systems, such as DIMP's tendency to extrapolate itself off track - and of
course, STEREOSYS is fully automatic, while comparable systems, such as DIMP,
require interactive operation.

Overall, we have found that STEREOSYS performs very well on the low-resolution
aerial imagery for which it was designed. It has also been applied to narrow-angle
ground-based imagery with reasonable results: STEREOSYS has difficulties when
processing areas that violate its premises about the continuity of the world, but ex-
periments linking it to an edge-based matcher [Baker 82] appear to solve the most
severe versions of these problems.

STEREOSYS has been used extensively at SRI and is suitable for transport to
other VAX systems (however, this is research code with the corresponding limita-
tions).

1.1.2 New Methods for Stereo Compilation

The conventional approach to recovering scene geometry from a stereo pair of images
is based on the matching of distinctive scene features, as well as on the satisfac-
tion of constraints imposed by the viewing geometry (e.g., the epipolar constraint).
Typically, three steps are required: determination of the relative orientation of the
two images, computation of a sparse depth map, and derivation of a dense depth
map for the given scene.

In the first step, points corresponding to unmistakable scene features are iden-
tified in each of the images. The relative orientation of the two images is then
calculated from these points. This is, in part, an unconstrained matching task.
Corresponding image features must be found. Without a priori knowledge, such a
matching procedure knows neither the approximate location (in the second image)
of a feature found in the first image, nor the appearance of that feature. However,
it is often the case that appearance will vary little between images and that the
images were taken from similar positions relative to the scene.

Recovery of the relative orientation of the images reduces the need for two-
dimensional matching to a one-dimensional matching problem; a scene feature iden-
tified in the first image is found by a one-dimensional search along a (epipolar) line
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in the second image. Identification of this feature in the second image makes it
possible to calculate the feature's disparity, and hence its relative scene depth.

Identification of corresponding points in the two images is typically based on
correlation techniques. Area-based correlation processes may be applied directly
to the raw image irradiances or to images that have been preprocessed in some
manner. Edges (e.g., as identified by the zero crossings of the Laplacian of their
image irradiances) have also been used to obtain correspondences.

The outcome of this second step is a sparse map of the scene's relative depth at
those points that were identified in both images of the stereo pair.

A sparse depth map does not define the scene topography. The third and fi-
nal step in recovering the topography of the scene is "filling in" this sparse map
to obtain a dense depth map of the scene. Typically, a surface interpolation or
approximation method is used as a means for calculating the dense depth map
from its sparse counterpart [Smith 84b]. A surface approximation model may be
formulated to provide desirable image properties (such as the lack of additional
zero crossings - in the Laplacian of the image irradiances - that are artifacts of
the surface approximation model), but often the surface model is based on a priori
requirements for the fitted surface, such as smoothness.

The problems encountered in the first two steps - recovery of the relative ori-
entation of the images and computation of the sparse depth map - are dominated
by the problems of image matching. False matches that arise from repetitive scene
structures, such as windows of a building, or from image features that are not
distinctive (at least, on the basis of local evidence) occur more frequently in the
unconstrained matching environment than in the constrained environment. In re-
covering the relative orientation of the images, we can use redundant information
in an effort to reduce the influence of false matches; this is more difficult in the
case when the sparse depth map is computed. Furthermore, we have little choice as
to which features we may use for sparse depth mapping; if we choose not to use a
feature, we cannot recover the relative depth at that scene point (without invoking
semantic or contextual knowledge).

The selection of suitable features for determining image correspondence is dif-
ficult in itself. Correlation techniques embed assumptions that are often violated
by the best image features. Area-based correlation techniques usually reflect the
premise that image patches are of a scene structure that is positioned at one dis-
tinct depth, whereas edges that arise at an object's boundaries are surrounded by
surfaces at different scene depths. Edge-based techniques are based on the assump-
tion that an edge found in one image is not "moved" by the change in viewing
position of the second image, whereas zero crossings found at boundaries of objects
whose surface gradients are tangential to the line of sight contradict this assump-
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tion. These would seem minor problems, were it not for the accuracy required of
the matching process. Typically, the spatial resolution of disparity measurements
must be an order of magnitude better than the image's spatial resolution. Stereo
matching appears to require features with properties that are often incompatible
with what is practical in realistic situations.

The third step, derivation of a dense depth map from a sparse one, is still far
short of having an adequate solution. Most approaches employ "blind" interpola-
tion, since no effective methods are currently in use for extracting depth from the
irradiance data in the individual images of the stereo pair (although some of the
new work described in the next section might alter this situation).

In summary, we see that the most demanding steps in the stereo compilation
process are the final two: computation of a sparse depth map, and derivation of
its dense counterpart. We have developed a new approach to stereo compilation
which involves combining these steps to recover a dense relative-depth map of the
scene directly from the image data [Smith 85 & 86]. We use image irradiance
profiles as input to an integration procedure that returns the corresponding dense
relative-depth profile. This procedure does not match image points (at least, not
in the conventional sense), nor does it "fill in" data to obtain the dense depth map.
It avoids the need to make the restrictive assumptions usually required for stereo
image matching, and it directly uses the image irradiance data in recovering the
dense depth map.

Other innovative approaches to stereo compilation that we have developed in-
clude:

* (a) A technique [Quam 84] that merges matching and interpolation in the context
of a coarse-to-fine hierarchical control structure; one of the images is geometrically

. warped to improve the performance of a cross-correlation-based matching technique.
A surface interpolation algorithm [Smith 84b] is used to fill holes whenever the

matching operator fails.

(b) A stochastic optimization approach [Barnard 86] that provides a dense array
of disparities without the need for interpolation. It uses a simulated annealing
algorithm to find a 3-D model which best satisfies the goals of matching points
with similar intensities while ensuring that the resulting surfaces are as smooth as
possible.

1.1.3 New Methods for 3-D Modeling Using Methods Which Do Not
Depend On Stereo Correspondence

We have noted the fact that it will not always be possible to find corresponding
scene points in the two images of a conventional stereo pair, and yet - to recover a
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dense scene model - we need to determine the depth at every scene point. Because
interpolation will not always provide an acceptable answer when matching fails, we
have developed a number of new techniques for recovering scene depth which do
not require establishing stereo correspondence.

A significant body of work exists in the area of extracting depth from the shad-
ing and texture visible in a single image (e.g., [Smith 83a & 83b] and [Pentland 84a],
these different techniques make a variety of distinct assumptions about the nature
of the scene, the illumination, and the imaging geometry. In Strat and Fischler
[85], we show that the distinct assumptions that are used by each of the different
schemes must be equivalent to providing a second (virtual) inage of the original
scene, and that all of these different approaches can be translated into a conven-
tional stereo formalism. In particular, we show that it is frequently possible to
structure the problem as that of recovering depth from a stereo pair consisting of a
conventional perspective image (i.e., the original image) and an orthographic image
(the virtual image); we provide a new algorithm needed to accomplish this type of
stereo reconstruction task.

In Pentland [85a] we show how focal gradients (image "blur"), which result from
the limited depth of field inherent in most optical systems, can be used to recover
scene depth. The advantages of this technique are that it is fast and computation-
ally simple, makes no special assumptions about the scene, and avoids the stereo
matching problem. Mathematical analysis and experiments indicate that the accu-
racy achievable by this technique is comparable to what can be expected from the
use of stereo disparity or motion parallax to determine scene depth.

For most purposes concerned with the analysis of imaged data, determination
of an array of depths (e.g., as obtained by conventional stereo methods) is only
the first step in the construction of a scene description. The conventional approach
next compiles largely continuous surfaces from the discrete depth information, and
then attempts to partition these surfaces into coherent 3-D objects. Aside from
some still unsolved theoretical problems, this process is computationally expensive
and time consuming. In Bolles and Baker [85], we describe a new method for using
camera motion through a scene to obtain a 3-D model in which higher-level scene
attributes are directly accessible.

This technique is based on considering a dense sequence of images as forming a
solid block of data. Slices through this solid at appropriately chosen angles intermix
time and spatial data in such a way as to simplify the partitioning problem: These
slices have more explicit structure than the conventional images from which they
were obtained. We believe that this work is a very important development; it offers
a completely new and direct method for accessing information about scene objects
without requiring a completely bottom-up analysis process.
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1.2 Feature Extraction: Scene Partitioning, Semantic
Labeling, and the Representation of Natural Scenes

Creating a scene description from a photographic image requires the ability to per-

form two basic operations: (a) partitioning the image into independent or coherent

pieces, and (b) assigning names or semantic labels to these pieces.

1.2.1 Scene Partitioning

The partitioning operation, necessary to reduce the computational complexity of

the subsequent scene analysis steps, has proven to be extremely difficult - the
performance of automated systems is still far inferior to that of humans. In part,

this disparity in performance is due to the fact that humans appear to use contextual

knowledge and past experience is such tasks, while most available computational

techniques employ only the local intensity patterns visible in the image, i.e., they

perform "syntactic partitioning." For practical as well as theoretical reasons, we

have carried out an investigation to determine the competence limits of a purely

syntactic approach to partitioning and, simultaneously, to construct an operational

system that approaches these limits. This investigation has resulted in a very high

performance system described in a paper by Laws [85].

Barnard 184b] describes one of a number of investigations that attempt to provide

a theoretical basis for the partitioning process. In this paper, Barnard explores the

idea that partitioning decisions result in alternative descriptions of a scene, and

that the preferred partitioning is the one that provides the "simplest" description.
In a paper by Fischler and Bolles [83], partitioning is viewed as an explanation

of how the image is related to the scene from which it was derived; it is shown

that completeness and stability of explanation, as well as simplicity, are necessary

partitioning criteria, since these attributes are necessary for an explanation to be

believable.

1.2.2 Feature Delineation and Semantic Labeling

In Fua and Hanson [85, 86a & 86b], we describe an approach to the problem of con-
verting a syntactically partitioned image (e.g., one provided by Laws' segmentation
system) into a semantic description. This work has produced a system that can
extract cultural objects from aerial imagery; it uses geometric reasoning to identify
semantically significant arrangements of straight line segments in the borders of the
supplied partition. Emphasis is placed on using generic models that characterize
significant kinds of geometric relationships and shapes, thereby avoiding the well-

known drawbacks inherent in the use of specific object templates. An important
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feature of this system is the generation of an explanation for any detected discrep-
ancy between the hypothesised object models and the initial partition. In principle,
this technique should ultimately permit intelligent compensation for anomalies due
to imaging or environmental effects that would be recognized by a well-briefed hu-
man analyst; for example, on the basis of illumination effects consistent with the
known sun positioni, the system can identify two contrasting regions of a peaked
roof as belonging to a single house.

1.2.3 The Representation and Recognition of Natural Forms

Our research in this area addressed two related problems: (1) representing natural
shapes such as mountains, vegetation, and clouds, and (2) computing such descrip-
tions from image data. A key step toward solving these problems is to obtain a
model of natural surface shapes.

A model of natural surfaces is extremely important because we face problems
that seem impossible to address with standard descriptive computer-vision tech-
niques. How, for instance, can we describe and recognize the shape of leaves on
a tree? Or grass? Or clouds? When we attempt to describe such common nat-
ural shapes using standard representations, the result is a model of impractical
complexity.

Furthermore, how can we extract 3-D information from the image of a textured
surface when we have no models that describe natural surfaces and how they evi-
dence themselves in the image? The lack of such a 3-D model has restricted image
texture descriptions to being ad hoc statistical measures of the image intensity
surface.

Fractal functions, a novel class of naturally arising functions, are a good choice
for modeling natural surfaces because many basic physical processes (e.g., erosion
and aggregation) produce a fractal surface shape, and because fractals are widely
used as a graphics tool for generating natural-looking shapes. Additionally, in a
survey of natural imagery, we found that a fractal model of imaged 3-D surfaces
furnishes an accurate description of both textured and shaded image regions, thus
providing justification for the use of this physics-derived model.

Progress relevant to computing 3-D information from imaged data has been
achieved by use of the fractal model. A test has been derived to determine whether
the fractal model is valid for a particular set of image data, an empirical method for
computing surface roughness from image data has been developed, and substantial
progress has been made in the areas of shape-from-texture and texture segmenta-
tion. Characterization of image texture by means of a fractal surface model has
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also shed considerable light on the physical basis for several of the texture parti-
tioning techniques currently in use, and made it possible to describe image texture
in a manner that is stable over transformations of scale and linear transforms of
intensity. The computation of a 3-D fractal-based representation from actual image
data has been demonstrated. This work has shown the potential of a fractal-based
representation for efficiently computing good 3-D representations for a variety of
natural shapes, including such seemingly difficult cases as mountains, vegetation,
and clouds.

Finally, the fractal model of surface shape has been used in a technique for 3-D
shape estimation that treats shading and texture in a unified manner. Previously,
shape-from-shading and texture methods have had the serious drawback that they
are applicable only to smooth surfaces, while real surfaces are often rough and
crumpled. We have extended one class of such methods to more realistic surfaces
by using the fractal surface model, constructing a method for estimating 3-D shape
that treats shading and texture in a unified manner [Pentland 84a]

We have constructed a representational system that combines the fractal func-
tions described above, for use in describing 3-D texture, and superquadric functions
(defined below) for describing shape in a concise and natural manner.

The idea behind this representational system is to provide a vocabulary of shapes
and transformations that will allow us to model an object world as a relatively sim- --

ple composition of component "parts," much as people seem to do. The most
primitive notion in this represention may be thought of as analogous to a "lump of
clay," a modeling primitive that may be deformed and shaped, but that is intended
to correspond roughly to our naive perceptual notion of "a part." For this basic
modeling element we use a parameterized family of shapes known as superquadrics.
This family of functions includes cubes, cylinders, spheres, diamonds, and pyrami-
dal shapes as well as the round-edged shapes intermediate between these standard
shapes. Superquadrics are, therefore, a superset of the modeling primitives cur-
rently in common use.

These basic "lumps of clay" are used as prototypes that are then deformed by
stretching, bending, twisting or tapering, and then combined using Boolean opera-
tions to form new, complex prototypes that may, recursively, again be subjected to
deformation and Boolean combination IPentland 86b, 86c & 86d].

We have also made significant progress toward the reliable recovery of these
modeling primitives from image data. We have developed theoretical results that
show how such descriptive primitives may be recovered in an overconstrained, and
therefore reliable, manner [Pentland 86e."

This research has contributed to the development of a computational theory of
vision applicable to natural surface shapes, compact representations of shape useful
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for describing natural surfaces, and real-time regeneration and display of natural
scenes.

2 Computing Environments and Technology
Transfer

Machine vision is largely an experimental science; progress in this science depends
on having available massive amounts of computing power, and on methods for I
manipulating and displaying images, their transformations, and depictions of the
corresponding scene content. Technology transfer must often be in the form of
machine code that can run in a compatible computing environment.

As part of our previously described work, we have built a research environment
based on the VAX-11/780 computer and have made this environment available
to appropriate university and government institutions. This environment includes
standard utilities (e.g., low-level image operators) and advanced scene-modeling
and recognition techniques (e.g., the Hannah Baseline Stereo System, the Laws
Segmentation System, and the Generalized Hough Transform).

More recently, we have constructed a powerful computing environment based on
the Symbolics 3600 series of LISP machines and an SRI product called Image-Calc.
Using this environment as a substrate, we have developed a number of scene analysis
and rendering systems. For example, a system called Terrain-Calc [Quam 85] can be
used to synthesize realistic sequences of perspective stereo views of real-world terrain
from stored geometric and photmetric models. This system has a sophisticated
graphical interface that allows the user to specify an arbitrary flight path over
a modeled piece of terrain. A sequence of views (single images or stereo pairs,
as desired), spaced at equal distances along the flight path, can be generated at
about 1 frame/minute; up to 60 frames can be displayed at 16 frames/second. This
system is revolutionary in its flexibility, computational efficiency, and the quality
of the renderings it produces - given that it does not employ any special-purpose
hardware.

The computational demands of practical machine-vision applications frequently
exceed the capacity of conventional serial computer architectures. For this reason,
attempts have been made to reduce computation time by decomposing serial al-
gorithms into segments that can be executed simultaneously on parallel hardware
architectures. Because many classes of algorithms do not readily decompose, one
seeks some other basis for parallelism. We have investigated the use of techniques
that exhibit natural parallelism. For example, in Fischler and Firschein 187] we
show that "guessing" the answer to a problem and then checking its validity is a
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useful approach, and that a number of important vision algorithms can be viewed as
having this structure; a parallel architecture capable of executing such algorithms
is described.
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